Goal Function Approach to Growth and Remodeling of Arteries
نویسنده
چکیده
In this thesis we develop a new goal function approach to investigate stability of the growth processes in blood vessels and cost-optimal composition and geometry of these vessels. In the vascular system of a healthy individual, the living composition of the arterial wall must regenerate and remodel continuously during the entire lifetime to maintain itself. In some cases the system destabilizes due to disease, injury or other complex processes. To understand how and when this happens, several mathematical models have been developed. These models have included an evolution equation for mass fractions of the vessel wall, describing how the vessel develops from an actual state to a target state. These works are based on constrained mixture theory (CMT), which takes care of production and removal of arterial constituents. The cost-optimal design of blood vessels has been studied previously by Murray. The aim of this thesis is to contribute to stability analyses of the growth process by formulating a new goal function approach, making it possible to examine under which conditions instability arises. We also aim to analyze changes in the optimum material composition and geometry of the vessel wall, using a more realistic, nonlinear material model. The blood vessel is modeled as a thin-walled tube and the constituents that form the vessel wall are assumed to deform together (CMT). The growth dynamics of the composite material of the vessel wall is described by an evolution equation, where the effective area of each constituent changes in the direction of steepest descent of a goal function. This goal function is formulated in such way that the constituents grow toward a target potential energy and a target composition. The response of the evolution equation is simulated for several different material models. These simulations suggest that elastin-deficient vessels are more prone to growth instability, but that increased vessel stiffness gives a more stable growth process. Another important finding is that an increased rate of degradation of materials impairs growth stability. By extending Murray’s law to include effects of nonlinear mechanics of the artery wall and a growth and remodeling mechanism based on CMT, and at the same time having the system satisfy an equilibrium equation, we study cost-optimal compositions and geometries of the vessel wall. This gives new insight into the wall’s architecture under optimal conditions.
منابع مشابه
A goal function approach to remodeling of arteries uncovers mechanisms for growth instability
A novel, goal function-based formulation for the growth dynamics of arteries is introduced and used for investigating the development of growth instability in blood vessels. Such instabilities would lead to abnormal growth of the vessel, reminiscent of an aneurysm. The blood vessel is modeled as a thin-walled cylindrical tube, and the constituents that form the vessel wall are assumed to deform...
متن کاملبررسی ارتباط اتصالات میواندوتلیال، میان سلول های اندوتلیال و نظم مارپیچی سلولهای عضلانی صاف جدار شرایین توزیع کننده (عضلانی)
Background and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL). However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arterie...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملSimple and Constrained Selection Indices with and without Calving Interval Included in Selection Goal Function for Holstein Cows of Iran
Two selection goals of inclusion or exclusion of calving interval (CI) in the selection goal function for Holstein cows in Iran, besides milk yield, milk fat percentage, and milk protein percentage, were studied. Four selection indices were composed of using the information on production traits, CI and / or days from calving to first insemination (DFI). The results of the predicted genetic grow...
متن کاملExamining Subsidy Polices on Maize Production in Iran (Panel Data approach)
Among the agricultural important factors, inputs are the most significant in agricultural production. This article aimed to examine the impact of government subsidy policies on production of one of the most strategic products, namely on production of one of the most strategic products, namely maize, in Iran. To achieve this goal, panel data for the nine provinces of Iran's major producers of ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014